Search results for "Sliding mode control"
showing 10 items of 22 documents
Adaptive Fuzzy Super-Twisting Sliding Mode Control for Microgyroscope
2019
This paper proposes a novel adaptive fuzzy super-twisting sliding mode control scheme for microgyroscopes with unknown model uncertainties and external disturbances. Firstly, an adaptive algorithm is used to estimate the unknown parameters and angular velocity of microgyroscopes. Secondly, in order to improve the performance of the system and the superiority of the super-twisting algorithm, this paper utilizes the universal approximation characteristic of the fuzzy system to approach the gain of the super-twisting sliding mode controller and identify the gain of the controller online, realizing the adaptive adjustment of the controller parameters. Simulation results verify the superiority a…
Finite-Time Control for Attitude Tracking Maneuver of Rigid Satellite
2014
Published version of an article in the journal: Abstract and Applied Analysis. Also available from the publisher at: http://dx.doi.org/10.1155/2014/302982 Open Access The problem of finite-time control for attitude tracking maneuver of a rigid spacecraft is investigated. External disturbance, unknown inertia parameters are addressed. As stepping stone, a sliding mode controller is designed. It requires the upper bound of the lumped uncertainty including disturbance and inertia matrix. However, this upper bound may not be easily obtained. Therefore, an adaptive sliding mode control law is then proposed to release that drawback. Adaptive technique is applied to estimate that bound. It is prov…
Nonlinear Robust Control of a Quadratic Boost Converter in a Wide Operation Range, Based on Extended Linearization Method
2022
This paper proposes a control system for a quadratic boost DC/DC converter in a wide range of operations, based on an inner loop with a sliding mode controller, for reaching a desired equilibrium state, and an outer loop with integral-type controller, for assuring robustness against load and input voltage variations and converter parameter uncertainties. The sliding mode controller is designed with the extended linearization method and assures local asymptotic stability, whereas the integral controller is designed using classical frequency methods, and assures input–output stability. It is shown that the proposed controller also deals with the sudden changes in the nominal operating conditi…
A Novel Adaptive Sliding Mode Controller for a 2-DOF Elastic Robotic Arm
2022
Collaborative robots (or cobots) are robots that are capable of safely operating in a shared environment or interacting with humans. In recent years, cobots have become increasingly common. Compliant actuators are critical in the design of cobots. In real applications, this type of actuation system may be able to reduce the amount of damage caused by an unanticipated collision. As a result, elastic joints are expected to outperform stiff joints in complex situations. In this work, the control of a 2-DOF robot arm with elastic actuators is addressed by proposing a two-loop adaptive controller. For the outer control loop, an adaptive sliding mode controller (ASMC) is adopted to deal with unce…
Load frequency regulation using observer based non-linear sliding mode control
2019
Abstract In this paper, the generalized extended state observer (GESO) and non-linear sliding mode control (SMC) are merged together to study the frequency deviation problem in multi-area power system. In study, the GESO is used not only for state and disturbance estimation but also for disturbance rejection of the system. The said observer ensures accurate estimation of the actual states leading to convergence of estimation error to zero. The non-linear SMC is used to increase the damping ratio of the system whenever, any perturbations occurs. The proposed observer based controller is compared with an existing two-layer active disturbance rejection control (ADRC) and also validated on larg…
Robust Active Disturbance Rejection Control of Induction Motor Systems Based on Additional Sliding-Mode Component
2017
This paper deals with motion control systems with induction motor, subject to severe requirements on both dynamics and steady-state behavior. The proposed control methodology could be viewed as an advancement of the standard field oriented control. It consists of two control loops, i.e., the rotor flux and the speed control loops, designed using the active disturbance rejection control method, with the aim to cope with both exogenous and endogenous disturbances, which are estimated by means of two linear extended state observers and then compensated. Moreover, with the aim of achieving total robustness, a sliding-mode based component is designed, in order to take into account disturbance es…
Nonlinear Control of a Pneumatic Muscle Actuator System
2001
Abstract The performance of a Pneumatic Muscle Actuator under three tracking control strategies is compared: robust backstepping, sliding-mode and gain scheduling. Robustness is assured for the three controllers in the presence of model uncertainties and external perturbations. Exponential stability is proved for the sliding-mode tracking controller, ultimate boundedness for the backstepping tracking controller and exponential stability for constant or slowly-varying reference signals for the gain scheduling controller. Computer simulations show a good performance for the tracking of a sine wave by the first two controllers, although the sliding-mode strategy yields a high-frequency switchi…
Sliding mode torque control of an induction motor for automotive application with sliding mode flux observer
2016
In this paper, the performance of two control systems of induction motors for automotive applications were compared in order to highlight the differences in terms of response speed, robustness and noise immunity. The first system is realized through a field-oriented control with PI controllers, while the second system is realized through a field-oriented control with Sliding Mode Controllers. Both controls are designed to follow the torque references as required for the vehicles and are tested with typical load profiles of vehicles. It also designed a sliding mode observer flux.
Observer-based sliding mode control for stabilization of a dynamic system with delayed output feedback
2013
Published version of an article in the journa: Mathematical Problems in Engineering. Also available from the publisher at: http://dx.doi.org/10.1155/2013/537414 Open Access This paper considers the sliding mode control problem for a kind of dynamic delay system. First by utilizing Lyapunov stability theory and a linear matrix inequality technique, an observer based on delayed output feedback is constructed. Then, an integral sliding surface is presented to realize the sliding mode control for the system with the more available stability condition. Finally, some numerical simulations are implemented to demonstrate the validity of the proposed control method.
State feedback control against sensor faults for Lipschitz nonlinear systems via new sliding mode observer techniques
2011
This paper investigates the problem of simultaneous state and fault estimation and observer-based fault tolerant controller design for Lipschitz nonlinear systems with sensor failure. A new estimation technique is presented in this paper to deal with this design problem. In the proposed approaches, the original system is first augmented by a descriptor model transformation, then a new Proportional and Derivative sliding mode observer technique is developed to obtain accurate estimations of both system states and sensor faults. The designing observer is generalized from the PD observer in [3], but is not a trivial extension. Based on the state estimates, a observer-based control strategy is …